La matematica e la logica sono istituzioni sociali

Il sociologo britannico David Bloor (n. 1942) nel 1976 pubblicò un libro, Knowledge & social imagery [1],  che segnò una svolta nella sociologia della scienza. Al suo interno egli si interessa di quelle che vengono comunemente ritenute discipline che hanno una natura cogente, che rispecchiano verità uniche e immutabili: la matematica e la logica. Con l’obiettivo di arrivare al nocciolo (che lui ritiene profondamente sociale) della conoscenza matematica:

«l’idea che la matematica sia variabile, allo stesso modo dell’organizzazione della società,
viene considerata da molti sociologi un’enormità»[2].

Eppure, già il filosofo, storico e scrittore tedesco Oswald Sprengler, nel suo famosissimo Il tramonto dell’Occidente (1918), e Ludwig Wittgenstein, nel difficile Osservazioni sopra i fondamenti della matematica (1956), avevano ipotizzato una connessione tra mondi di numeri e mondi di civiltà.

Anche il matematico, logico e filosofo tedesco Gottlob Frege, ne I fondamenti dell’aritmetica nel 1884, aveva argomentato che la matematica (contrariamente alla posizione di John Stuart Mill, presentata in Sistema di logica raziocinativa e induttiva del 1843) non era una scienza induttiva, nel senso che non si basava sull’esperienza, cioè su operazioni fisiche sugli oggetti. L’idea di Mill poteva tutt’al più essere utile pedagogicamente, ossia a insegnare ai bambini ad apprendere la matematica attraverso la manipolazione di oggetti (sassolini, granelli di pepe, biglie ecc.).

Frege sostiene che i numeri non sono esperienza: chi ha mai avuto esperienza dello zero («zero sassolini») o di numeri estremamente grandi come 10.000.000.000? Avere esperienza di «una cosa», non significa avere esperienza del numero 1, dice Frege. I numeri naturali (0, 1, 2, 3 ecc.) servono per numerare, ma non si identificano con le cose numerate. Infatti, hanno proprietà che non si trovano nella cosa numerata (es. il pari o il dispari), che non si vedono né si toccano, mentre si vedono e toccano le cose a cui essi si riferiscono. Allo stesso modo è difficile sostenere che i numeri ‘immaginari’ (es. 2i), che nascono dal fatto che non è possibile calcolare la radice quadrata di un numero negativo, e i numeri ‘complessi’ (dati dalla somma di una parte reale e una immaginaria - es. 5 + 2i) siano astrazioni ottenute da cose reali.

E anche il matematico tedesco Richard Dedekind, nel suo Essenza e significato dei numeri (1888), riteneva i numeri libere creazioni dello spirito umano, del tutto indipendenti dalla realtà, e un’emanazione diretta delle pure leggi del pensiero.

Come sottolinea il matematico italiano Enrico Giusti (1999) anche gli oggetti della geometria euclidea (retta, piano, lunghezza, area, cerchio, angoli, ecc.) non provengono dall’astrazione di oggetti reali, esterni, indipendenti dall’osservatore, ma da un processo di oggettivazione delle procedure, di pratiche sociali che formalizzano l’operare umano (come tracciare un cerchio sul terreno usando una corda ecc.). La matematica si sviluppa mediante il ripetersi di una sorta di modulo che porta a «fissare», e quindi a far esistere, gli oggetti matematici. Questo avviene in tre fasi: inizialmente vengono introdotti nuovi strumenti, metodi dimostrativi originati da idee innovative; poi essi diventano soluzioni di problemi e insieme oggetti di studio; infine, se vengono accettati, acquistano una vera e propria esistenza oggettiva.

Lo stesso sostiene Bloor (1976/1994, p. 143-4):

i tessitori di tappeti imparano a riprodurre un modello osservando e lavorando con gli altri. Dopo di che possono lavorare autonomamente e applicare più e più volte la tecnica a nuovi casi. Potrebbero, per esempio, mettersi a tessere il tappeto più grande che si sia mai visto: a loro basta solo aver imparato ed essersi esercitati su quelli piccoli.
Questa è la natura delle tecniche.
Analogamente, una spiegazione dell’aritmetica può basarsi su un’esperienza di portata limitata, a condizione che l’esperienza fornisca modelli, procedure e tecniche che possano essere applicati
o riprodotti all’infinito
.

Certamente la matematica non nasce dall’esperienza e dalla percezione (come già sosteneva Frege), ma viene inventata.

Tuttavia, secondo Bloor, essa non è solo un’invenzione (un gioco formale, mentale, puramente soggettivo) senza rapporti con la realtà circostante, perché essa nasce da necessità, da una manipolazione empirica.

In altri termini, essa è un’invenzione sociale, una costruzione (quindi con una certa dose di arbitrarietà) basata su pratiche. Gli enti matematici hanno, quindi, la natura di costrutti ideali, che trovano però un fondamento in una concreta prassi umana che col tempo si stabilizza e si generalizza nella forma di soluzione di problemi.

Bloor, quindi, da una parte accetta la posizione di Frege; dall’altra la porta alle estreme conseguenze, criticando lo stesso Frege e rivalutando e correggendo Mill (che aveva parlato della matematica anche come realtà soggettiva, psicologica): se i numeri non sono basati su una realtà empirica bensì su nozioni teoriche (altamente elaborate, le più fini e le più pure che mai mente sia riuscita a pensare), da dove vengono queste nozioni? Se non dalla natura, allora dalla cultura: «la componente teorica della conoscenza è proprio la componente sociale»[3].

-----------

Bloor comincia quindi, fenomenologicamente, a immaginare una matematica alternativa[4] in cui gli esiti delle operazioni dovrebbero produrre sistematicamente risultati diversi. In questa idea apparentemente assurda, egli trova conforto nella matematica greca antica, dove il numero 1 non era considerato un numero. Non era neppure pari o dispari; esso era entrambi, cioè parimpari, perché era considerato il punto di partenza, il generatore dei numeri (1+1=2; 1+1+1=3 ecc.), sia dei pari che dei dispari, per cui partecipava di entrambe le nature (pp. 155-6). All’interno di questa visione, l’1 è anche il numero più grande perché contiene tutti gli altri numeri; è inoltre il numero con il più alto numero di relazioni/rapporti con gli altri numeri, perché tutti i numeri partono da lui e sono scomponibili nell’unità minima che è 1. Infine, l’1 è la totalità, la parte più grande: se si scompone/taglia l’1 (es. 1 torta), le parti che emergono (2, 3, 5 ecc.) sono più piccole dell’1 interezza o totalità. Peraltro, etimologicamente il numero 2 sembra derivi da «taglio».

La matematica dei pensatori pitagorici e, successivamente, dei platonici era di tipo catalogatorio e riecheggiava le classificazioni in uso nella vita quotidiana. Tale “schema di classificazione simboleggiava la società, la vita e la natura [...] I vari tipi di numeri ‘stavano per‘ proprietà come la Giustizia, l’Armonia e Dio“ (p. 169). Era una matematica applicata, usata per questioni pratiche e carica di magia: per esempio i Pitagorici consideravano il 2 un numero femminile, come tutti i numeri pari, e il numero 10 era collegato alla salute e all’ordine del cosmo. Un po’ come la smorfia napoletana[5] oppure il simbolismo numerico nella Bibbia, dove (ad esempio) il 3 era la perfezione (mentre la stessa, per i Maya, era rappresentata dal 4). Il 4 nel Medioevo era considerato un numero perno e risolutore (quattro sono i punti cardinali, i venti principali, le stagioni, le fasi lunari, le arti liberali del quadrivio, i lati del quadrato a cui veniva paragonata la Terra, in opposizione al triangolo del cielo, simbolo della Trinità). Inoltre, 4 è il numero della perfezione morale e delle proporzioni dell'uomo. Il 7 è il numero buddhista della completezza.

Bloor quindi ha trovato una matematica alternativa: “è chiaro che se non riconosciamo il misticismo del numero come una forma di matematica, nessuna questione di matematica alternativa può essere posta [...] esso rende tautologico il fatto che non via sia una matematica alternativa»[6]. Quindi la matematica non ha una vita propria o un significato intrinseco racchiuso negli stessi simboli che devono essere solo percepiti e compresi[7].

Bloor si chiede: la radice quadrata di 2 è un numero irrazionale (1.41421 35623…), come sostengono i moderni, oppure non è per niente un numero, come dicevano gli antichi greci? Nessuna dimostrazione giungerà a risolvere la questione perché si tratta di visioni matematiche incommensurabili, il cui «significato [non] risiede sulla carta o nelle procedure simboliche del calcolo stesso»[8]. Occorre che esistano determinate condizioni sociali, cioè un sistema di classificazioni e un insieme di significati culturalmente condivisi, perché il calcolo abbia un significato[9].

Quindi il numero è un ruolo[10], una posizione da non confondersi con l’oggetto che incontra stando in quel ruolo. Ma se parliamo di ruoli, posizioni, allora ci troviamo nel campo della sociologia e i numeri possono essere tranquillamente definiti delle istituzioni sociali: «se la matematica riguarda i numeri e le loro relazioni e se queste sono prodotti e convenzioni sociali, allora, effettivamente, la matematica riguarda qualcosa di sociale»[11].

Citando le conclusioni a cui giunge il filosofo (di origini lettoni) Jacob Klein, studioso del pensiero matematico greco, Bloor sostiene che «attribuire alla nozione di numero una tradizione di significato unica e ininterrotta sia un errore [...] la continuità che noi vediamo nella tradizione della matematica è artificiale. Deriva dal fatto che attribuiamo il nostro stile di pensiero a opere precedenti»[12].

----------

Per concludere, e rafforzare l’idea di un nucleo sociale della matematica, possiamo notare che i numeri raramente vengono usati in forma pura o astratta. Più spesso appaiono sempre insieme a un referente: “possedere 5 case”, “decidere in 2”, “conservare 10 lingotti”.

Il referente è il motore dell’interpretazione, del giudizio, dell’invidia o risentimento. Inoltre, a seconda del referente, possono perdere la loro natura cardinale: avere 3 figli non vuol dire avere 3 volte 1 figlio e non è come avere 3 sassolini o 3 fagioli.

La dinamica sociale, nel primo caso, si mostra in tutta la sua pregnanza: se si hanno 3 figli contemporaneamente si devono affrontare dinamiche molto diverse dall’avere 3 figli a distanza: l’organizzazione sociale ed economica sarà molto diversa nel secondo caso.

Per cui i numeri sono profondamente sociali. Se così non fosse perché gli studenti ci rimangono così male se prendono 29 anziché 30? Perché i/le docenti, in seduta di laurea, danno a malincuore un 109, considerato quasi una beffa nei confronti della/o studente/ssa?

 

NOTE

[1] D. Bloor, Knowledge and Social Imagery, The University of Chicago Press, 1976 – traduzione italiana in La dimensione sociale della conoscenza, Milano Cortina, 1994

[2] D. Bloor, La dimensione sociale della conoscenza, Milano Cortina, 1994, p. 151

[3] Ibidem, p. 137

[4] Ibidem, p. 152

[5] Essa è una sorta di «dizionario» di interpretazione di sogni (ma a volte anche di situazioni reali), in cui a ciascun vocabolo (persona, oggetto, azione, situazione ecc.) corrisponde un numero da giocare al Lotto. L'origine del termine Smorfia è incerta, ma la spiegazione più frequente è legata al nome di Morfeo, il dio del sonno nell'antica Grecia. Esiste un gran numero di smorfie locali, in uso in altre città.

[6] D. Bloor, La dimensione sociale della conoscenza, Milano Cortina, 1994, p. 170

[7] Ibidem, p. 171

[8] Ibidem, p. 173

[9] Ibidem, p. 174

[10] Ibidem, p. 142

[11] Ibidem, p. 142

[12] Ibidem, p. 157


Dark Ecology - Un'ecologia che rinnega la Natura

Sette proposte.

  1. Gli animali possono godere dell’arte?
  2. Gli animali possono riflettere su sé stessi? Gli umani possono riflettere su sé stessi? L’autoriflessione rispetto alla sofferenza è importante?
  3. Che cos’è la consapevolezza? È una capacità cognitiva “superiore” (meno frequente) o “inferiore” (più frequente)?
  4. I Neanderthal erano dotati di immaginazione? E noi l’abbiamo? È importante?
  5. L’intelligenza artificiale soffre? I batteri possono soffrire? Quali sono i limiti “inferiori” della sofferenza?
  6. La coscienza è intenzionale?
  7. Il pensare e il percepire sono distinti?[1]

 

Chi pone queste domande e a chi? Gli studiosi umanisti agli scienziati scrive Timothy Morton, professore alla Rice University di Houston. Sono proposte che emergono lungo la lettura del suo libro Come un’ombra dal futuro (l’espressione è di P. B. Shelley)[2].

Proposte che nel confronto tra studiosi andranno rielaborate, i concetti ridefiniti, le parole risignificate, eliminate, rivoltate.

Non basta più fornire «pubbliche relazioni migliori» alla scienza o studiarne le conseguenze. C’è un pensiero nuovo sulla soglia che chiede di interagire attivamente con la scienza. Un pensiero che abbandona il nichilismo diffuso del pensiero umanistico postmoderno e interroga la rigidità austera della scienza che nel laissez-faire dominante del capitalismo si trasforma con troppo piacere in scientismo. C’è una strana distanza, sadica, implicita in un atteggiamento che si dice sperimentale, condiviso da teorie economiche e teorie scientifiche.

Questo pensiero vuole chiederne conto, vuole che insieme si scenda nel fango, “umanisti” e “scienziati”, e si ricominci a fare esperienza del nostro mondo. Possiamo vivere in una società in cui le scienze contemplino la negatività, agire nella possibilità dell’errore e del torto, rispondere della nostra opera nella maglia del mondo in mezzo a esseri che si presentano “estranei strani”.

Come un’ombra dal futuro

Complicato? Sì, perché spero le frasi si presentino nella loro forza di suggestione, anche se estrapolate dal libro di Morton. Pubblicato nel 2010 e portato in Italia dalle edizioni Aboca nove anni dopo, Come un’ombra dal futuro si presenta come un manifesto per un nuovo pensiero ecologico» ancora da pensare.

I ragionamenti sono molti, spesso piacevoli in quanto arricchiti da numerose citazioni poetiche e cinematografiche, oltre che da un eloquio che si contraddistingue per lo slancio rivoluzionario, ai limiti dell’escatologico. Sono tesi forti, a tratti appena accennate, in altre parti pensate a lungo e con onestà. Il linguaggio è coinvolgente, ma non rinuncia alla profondità di pensiero e per questi motivi ho pensato fosse interessante dargli risalto.

È un libro che vuole essere divulgazione rivolta a lettori e lettrici che possano affrontarne le pagine dense di contenuti anche senza una conoscenza specialistica.[3] Si presenta a noi come un confronto serrato tra le tesi che caratterizzano il pensiero queer, basate su un’ontologia influenzata dagli scritti di Lévinas e che si oppone a Heidegger scontrandosi con quel pensiero immobilizzante dei paradigmi da fine della storia.

Complicato anche perché l’ecologia dark è come un film noir, afferma Morton. Non è la soddisfacente vittoria deduttiva del pensiero razionale à la Sherlock. Pensiamo di essere di essere esterni e oggettivi, ma ci ritroviamo irrimediabilmente coinvolti. Non solo. Pensiamo di essere umani e come Deckard di Blade Runner – il richiamo al capolavoro è dell’autore – scopriamo di essere replicanti. Cosa succederebbe? Siamo capaci di pensare il negativo delle concezioni che ci hanno accompagnato alla fine della modernità? Siamo capaci di un pensiero che superi il negativo riconoscendo che esso stesso è opera nostra?

Ecologia oscura

Perché proprio riconoscere la nostra opera è ciò che fa scattare il pensiero ecologico per Morton. Sappiamo ora che abbiamo sempre terraformato la Terra. Grazie alle tecnologie di cui disponiamo oggi possiamo decostruire molti costrutti che inquinano il pensiero. Possiamo fare esperienza dell’appartenenza a un mondo più grande, quasi infinito. Più che olistico dice Morton, perché come una geometria frattale si avviluppa e riproduce in ogni sua parte.

L’arte, per esempio, può essere profondamente ecologica (e già lo è). Non solo, essa può diventare visione anche per le scienze. Grazie allo sviluppo dell’utilizzo di tecniche come l’ingrandimento, lo stop motion, il time-lapse, abbiamo oggi accesso a nuove riproduzioni della realtà. Pensate a quei video prodotti in time-lapse che possono narrare la vita di una pianta lungo due anni di tempo, i quali ci consegnano una pianta vitale, in movimento, estranea alla nostra idea di “pianta”.

Così come è possibile ricreare spazi ambientali che esaltino proprio la loro caratteristica di essere ambiente (Morton pensa alle sale del Centre Pompidou, quelle del piano dedicato al contemporaneo). O ancora, la riproduzione delle forme naturali attraverso le già citate geometrie frattali, che da anni hanno tutta la nostra attenzione. Senza parlare di quello che Morton non poteva vedere nel 2010, che vediamo oggi nelle riproduzioni o “creazioni” affidate all’Intelligenza Artificiale o vissute nella realtà virtuale.

Rinnegare la Natura

Vedere questo ci permette di interrogare nuovamente i costrutti che dominano le nostre visioni economiche, ambientaliste e scientifiche. Non c’è alcun mondo da re-incantare o da ritrovare. Al contrario, c’è per Morton un mondo da demistificare e il suo principale obiettivo polemico è la Natura in questo caso. Il concetto di Natura è per l’autore il principale punto debole dell’ambientalismo “verde brillante” che presta il fianco al capitalismo, anche se non vorrebbe. Non si parla solo della produzione di batterie al litio rispetto all’estrazione di petrolio e alla produzione di CO2 in eccesso nell’atmosfera. Il vero greenwashing è nascondere ciò che è negativo della nostra realtà di viventi. Nascondere i rifiuti, parte dell’ambiente di un vivente, sotto il tappeto. Spiego meglio: l’ambientalismo preserva un paesaggio “naturale” dall’installazione di pale eoliche, l’estetica vince sull’etica, mentre sottoterra scorre l’ultimo oleodotto e stagna il bagno chimico. La Natura è fantasma, inconscio collettivo, costruzione da sogno che fa dimenticare all’umano di essere responsabile del mondo.

L’ecologia proposta da Morton non è nichilista, non è ambientalista, rinnega la Natura.
In tutto questo, lo trovo un pensiero liberatorio e interessante, oltre che sicuramente provocatorio.
È un pensiero che si affaccia e che ha bisogno di essere pensato. Non solo.
Ha bisogno delle scienze perché le vuole coinvolgere attivamente nella demistificazione del mondo.
Le domande che ho riportato in apertura sono le domande che Morton inizia a porre per comprendere il nuovo ruolo dell’umano del mondo.
Ruolo millenario, ma che solo oggi iniziamo a conoscere – sembrerebbe.

 

Se potessimo dimostrare che la coscienza non è una sorta di sublime premio aggiuntivo per essere fatti in modo così elaborato, bensì un’impostazione predefinita allegata al software, allora i vermi sarebbero coscienti in ogni senso significativo. Un verme potrebbe diventare Buddha, in qualità di verme. Siamo sicuri che i non umani non abbiano un senso dell’”io”? Siamo sicuri che noi lo abbiamo?[4]

 

 

NOTE

[1]     Timothy Morton – Come un’ombra dal futuro. Per un nuovo pensiero ecologico – Aboca edizioni, Sansepolcro (Ar) 2019

[2]     Le proposte sono riassunte così come le porto alle pagine 184 e 185 della traduzione italiana del libro.

[3]     Gli studi e le ipotesi contenute si basano su precedenti libri di Morton Dark Ecology (2016), Ecology without Nature (2007), che il lettore specialistico o in cerca di analisi più approfondite può recuperare facilmente nelle edizioni in lingua originale.

[4]     Timothy Morton – Come un’ombra dal futuro. Per un nuovo pensiero ecologico – Aboca edizioni, Sansepolcro (Ar) 2019


A debate about Apes - La Teoria della Mente nei grandi primati?

Avete presente gli intrecci delle soap opera televisive, quelli basati su dei malintesi che si gonfiano in maniera spropositata per colpa di false credenze? Di quelli che provocano drammi complicatissimi perché tizio crede che lei creda che l’altro la ami (ma non è così), e così via?

Ecco: questi intrecci non potrebbero esistere se l’essere umano non fosse dotato di una teoria della mente (anche denominata ToM: Theory of Mind), ovvero la capacità di attribuire stati mentali a sé stessi e agli altri nonché la capacità di comprendere che gli altri possano avere degli stati mentali diversi dai propri. È un concetto intuitivo, di cui diamo per scontata l’esistenza in ogni nostra interazione quotidiana.

Senza addentrarci negli studi di questa teoria applicata all’essere umano, il concetto risulta poco scontato quando lo applichiamo al mondo degli animali non-umani, interrogandoci sulle loro effettive capacità di astrazione e comprensione degli stati mentali propri e altrui. Il tema è curioso e merita un’analisi propria, specialmente se si considera che il concetto stesso di “teoria della mente” è stato sviluppato all’interno di studi sugli scimpanzé, quindi non di psicologia classica, culminando successivamente in un accesissimo dibattito ancora oggi irrisolto.

LE PREMESSE AL DIBATTITO

  • Partiamo da Darwin (ovviamente). Egli ha fortemente influenzato le premesse teoriche su cui si poggiano gran parte degli studi relativi alle capacità cognitive dei primati, in quanto nella sua opera “L’origine dell’uomo e la selezione sessuale” (1871) sosteneva che non vi fossero differenze fondamentali tra le facoltà mentali dell’uomo e quelle dei mammiferi superiori e che, pertanto, qualsiasi differenza tra queste fosse relativa esclusivamente alla gradazione e non al tipo. Queste riflessioni, come vedremo, hanno condotto vari studiosi a legittimare approcci di ricerca basati sul principio dell’analogia, per cui comportamenti animali simili ai nostri si considerano causati dallo stesso tipo di cause psicologiche che riconosciamo nell’essere umano.
  • Nel 1978 i due studiosi David Premack e Guy Woodruff pubblicarono il celebre articolo “Does the chimpanzee have a theory of mind?”, in cui venivano illustrati una serie di esperimenti condotti su un gruppo di scimpanzé che, a parere degli autori, dimostravano che questi fossero in grado di attribuire stati mentali a sé stessi e agli altri, in particolare per quanto concerne il desiderio, il porsi un obiettivo o anche per le loro attitudini affettive. Fu il primo articolo nella Storia a formulare e spiegare il concetto di “Teoria della mente”, poi ripreso con successo in svariati studi.

IL DIBATTITO

Il lavoro di Premack e Woodruff è stato ripreso e approfondito nel corso degli anni da vari studiosi. In particolare, due gruppi di ricerca si sono dedicati ampiamente allo studio della ToM negli scimpanzé, producendo buona parte della letteratura al riguardo: il gruppo di Michael Tomasello a Leipzig e quello di Daniel Povinelli in Louisiana.

Il primo, in continuità con gli studi precedenti, sostiene che una qualche forma di teoria della mente è effettivamente presente negli scimpanzé, mentre il secondo nega completamente che questa possa mai esistere negli scimpanzé o in altri primati.

Ma come mai vi è un tale disaccordo?

  • Secondo Tomasello molteplici evidenze sperimentali hanno confermato che negli scimpanzé sono presenti dei meccanismi cognitivi e psicologici analoghi a quelli degli esseri umani, specialmente per determinati tipi di cognizione, e che pertanto in questo senso è possibile sostenere che tale specie sia dotata di una teoria della mente. Al tempo stesso, l’autore ha anche specificato che con tale definizione si definisce in realtà uno svariato range di processi mentali, che non sono necessariamente condivisi dalle specie più simili a noi, scimpanzé compresi.
  • Povinelli, al contrario, nega categoricamente che possa esistere alcuna forma di ToM negli scimpanzé poiché ogni forma di esperimento fondata sul principio dell’analogia menzionato in precedenza è incapace di dimostrare efficacemente che un determinato comportamento non solo sia causato da uno specifico processo mentale, ma anche che tal processo mentale sia simile a quello dell’essere umano prima di produrre lo stesso tipo di comportamento. Pertanto, quando nel corso degli esperimenti si rilevano analogie tra scimpanzé ed esseri umani, di fatto si sta solo proiettando sul mondo animale la propria percezione del mondo. L’autore, invece, ritiene che una spiegazione molto più adeguata del comportamento sociale degli scimpanzé sia la semplice capacità di questi animali di rappresentarsi e riflettere sui propri comportamenti, senza alcun’altra considerazione di livello superiore relativa a se stessi o agli altri.

QUALCHE CONSIDERAZIONE

In un paper del 1998 Cecilia Heyes scriveva: “In ogni caso in cui il comportamento dei primati non umani è stato interpretato come un segno di teoria della mente, questo si sarebbe anche potuto manifestare per caso o come il prodotto di processi non mentalistici, come un apprendimento per associazione o qualche inferenza basata su categorie non mentali” (trad. mia). Da quando l’autrice scriveva queste parole le cose non sono granché cambiate. Fa quasi sorridere che degli studiosi affermati arrivino ad accendersi a tal punto da pubblicare vignette di scherno l’uno dell’altro (vedi sotto), eppure questo è solo uno dei tanti casi di disaccordo in ambito scientifico e, come in tanti altri casi, ad uno sguardo più accurato ci si rende conto che una tale divergenza si poggia tanto su considerazioni teoriche di base differenti quanto su un diverso approccio empirico.

In primo luogo, gli autori non sono d’accordo su che cosa sia la teoria della mente (quindi l’oggetto stesso dei loro esperimenti!!): per Tomasello costituisce un variegato gruppo di processi cognitivi e psicologici, mentre per Povinelli è una qualità specifica che una specie o possiede o non possiede.

In secondo luogo, risulta particolarmente difficile comprendere se gli esperimenti dimostrino effettivamente quello che vogliono dimostrare oppure possano essere spiegati e interpretati anche attraverso categorie diverse.

In ultimo, l’assetto sperimentale stesso risulta precario e pieno di fragilità.

È evidente che per poter condurre degli esperimenti in laboratorio con un gruppo di scimpanzé è necessario educare gli esemplari di quel gruppo, così da renderli capaci di poter svolgere un esperimento.

Il raggiungimento di un tale traguardo può richiedere anni, rendendo quindi l’assetto sperimentale di difficile replicabilità e per certi versi troppo “artificiale”.

 

 

 

Bibliografia

Andrews, K. (2005, November). Chimpanzee Theory of Mind: Looking in All the Wrong Places. Mind & Lamnguage, 20(5), 521-536.Call, J., & Michael Tomasello. (2008). Does the chimpanzee have a theory of mind? 30 years later. Trends in Cognitive Sciences, 12(5), 187-192.

Call, J., Hare, B., & Tomasello, M. (2003, June). Chimpanzees versus humans:it's not that simple. TRENDS in Cognitive Sciences, 7(6), 239-240.

Heyes, C. (1998). Theory of mind in nonhuman primates. Behavioral and brain sciences, 21, 101-148.

Penn, D., Holyoak, K., & Povinelli, D. (2008). Darwin's mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and brain sciences, 31, 109-178.

Povinelli, D., & Vonk, J. (2003, April). Chimpanzee minds: suspiciously human? TRENDS in Cognitive Sciences, 7(4), 157-160.

Povinelli, D., & Vonk, J. (2004, February). We Don't Need a Microscope to Explore the Chimpanzee's Mind. Mind & Lamguage, 19(1), 1-28.

Povinelli, D., Bering, J., & Giambrone, S. (2000). Toward a Science of Other Minds: Escaping the Argument by Analogy. Cognitive Science, 24(3), 509-541.

Premack, D. (2007, August). Human and animal cognition: Continuity and discontinuity. PNAS, 104(35), 13861-13867.

Premack, D., & Woodruff, G. (1978). Does the chimpanzee have a theory of mind? The behavioral and brain sciences, 4, 515-526.

van der Vaart, E., & Hemelrijk, C. (2014). 'Theory of mind' in animals: ways to make progress. Synthese, 191, 335-354.


Che bella equazione! – Il ruolo della bellezza nelle scienze

«My work always tried to unite the true with the beautiful;
but when I had to choose one or the other,
I usually chose the beautiful»[1] (H. Weyl)

 

INTRODUZIONE

L’obiettivo di questo articolo è di riflettere sulla bellezza, una tematica apparentemente semplice e ordinaria ma che si rivelerà, nel corso dell’esposizione, un nucleo problematico da indagare attentamente.

Iniziamo la nostra disamina con una sezione filosofica, per sottolineare che siamo davanti a una questione complessa, che presenta sfumature concettuali profonde e antiche. Successivamente, analizzeremo questo tema da un punto di vista scientifico, con l’intento di mostrare come la bellezza entri a pieno diritto nei discorsi della scienza.

Lo scopo di questo scritto è di decostruire una narrazione ingenua, limitante e simil-scientista, che vede bellezza e scienza come due argomenti lontani e slegati, che non si incontrano mai, come due rette parallele. Mostreremo come tale separazione sia puramente convenzionale, contingente.

 

1. BELLEZZA E FILOSOFIA

In filosofia, l’analisi della bellezza ha origini antiche; questo tema viene indagato dall’estetica, una disciplina filosofica di ampio respiro che abbraccia numerose tesi e nuclei concettuali come, per esempio, «la produzione e i prodotti dell’arte»[2] o «il giudizio di gusto su di essi»[3].

Platone (427 ca.-347 ca. a.C.) sostiene che la bellezza è collegata all’ordine, alla proporzione e all’armonia; inoltre, la descrive come «la manifestazione più evidente del bene che permea tutte le cose»[4].

Nel Simposio, sviluppa l’idea secondo cui la bellezza attragga Eros (Amore), indicato come un “demone”, un’entità semidivina «sospesa fra cielo e terra»[5]; quindi, «l’amore viene stimolato dalla bellezza, […]: essa è il fine dell’amore, ciò verso cui l’amore riversa il suo slancio»[6].

Nel Fedro, inoltre, Platone afferma che la bellezza sensibile permette all’anima di ricordare l’idea di bellezza, perfetta e divina, ammirata prima dell’incarnazione. Pertanto, la bellezza del mondo fisico, nonostante sia molto lontana dalla compiutezza dell’idea, permette che lo spirito si elevi: «uno, al vedere la bellezza di quaggiù, ricordandosi della vera bellezza mette nuove ali»[7].

Per Platone esistono diverse tipologie di bellezza, ognuna delle quali occupa una posizione gerarchica distinta: sul gradino più basso incontriamo la bellezza del corpo mentre in cima troviamo la bellezza in sé, «idea eterna e immutabile di cui partecipano tutte le cose belle, sia fisiche sia spirituali»[8].

Plotino (205 ca.-270 ca. d.C.), figura centrale del neoplatonismo, «approfondisce e sviluppa la riflessione platonica sul bello, esposta nel Fedro e nel Simposio, associando il bello alla perfezione del mondo ideale»[9]; inoltre, questo autore dedica due trattati alla tematica della bellezza e la sua visione viene a volte qualificata come una “metafisica del bello”[10].

Nel testo enneadico Sul bello, in disaccordo con Platone, Plotino critica l’idea della bellezza considerata nei termini di armonia e proporzione delle parti, specificando che essa si trovi invece in qualità e oggetti semplici, poiché «ogni allontanamento dall’unità verso la molteplicità equivale a una perdita di perfezione»[11].

D’altra parte, Plotino condivide con Platone l’idea che la bellezza abbia valore anagogico, quando afferma che la bellezza sensibile è una tappa del percorso di purificazione dell’anima, cammino che la deve portare sempre più in alto nella scala dell’intelligibile: «compito dell’anima è […] di distogliere gradualmente la propria visione da quei corpi che non sono altro che “immagini e tracce e ombre” della vera fonte della bellezza, e, rientrando in sé, risalire verso quell’Uno […] circondato da ogni parte dal Bello, un “Bello che dispensa la bellezza a tutte le cose […]”»[12].

Pertanto, «è […] attraverso Plotino che si comprende come, nell’Antichità in generale, sia sempre più difficile, e spesso arbitrario, separare il problema della bellezza […] dalle costruzioni metafisiche in cui esso si inserisce»[13].

Infine, neanche per Edmund Burke (1729 ca.-1797) il bello può essere determinato secondo le categorie di armonia e proporzione, perché «l’ordine e la convenienza tra le parti sono […] qualità colte dall’intelletto, là dove l’effetto della bellezza è molto più immediato e sensibile»[14].

Burke contrappone la bellezza a un altro concetto, il sublime: la prima genera l’amore, «una passione […] sociale, intersoggettiva»[15], mentre il secondo dà origine al terrore, un’emozione collegata «alla tendenza di ogni individuo alla propria autopreservazione»[16]. Le divergenze, però, non terminano qui, in quanto il bello «nasce dalla visione di cose piccole e delicate, e dal contatto con tutto ciò che è liscio, levigato, sinuoso»[17]; al contrario, il sublime si origina, per esempio, dalla visione di spazi molto ampi (oceani, montagne ecc.) o dal «sentimento dell’infinito»[18].

 

2. SEMIR ZEKI E LA NEUROESTETICA: UNO STUDIO

Il neurobiologo Semir Zeki è ritenuto l’iniziatore della neuroestetica, «un filone di ricerca nell’ambito delle neuroscienze che indaga le basi neurali e cognitive dell’esperienza estetica»[19].

In una sua ricerca, pubblicata nel 2014, un gruppo di matematici doveva esprimere il proprio giudizio estetico rispetto a sessanta equazioni, mentre ne veniva registrata l’attività cerebrale per mezzo della risonanza magnetica funzionale (fMRI). I risultati dell’esperimento hanno mostrato, in particolare, l’attivazione di una specifica area nel cervello dei soggetti analizzati, una zona dove «c’è sempre attività neuronale quando si ha esperienza di bellezza»[20], a prescindere dalla sua fonte (un quadro, un brano musicale, un’equazione ecc.). La regione individuata è connessa alle emozioni e viene indicata come «campo A1 della corteccia orbito-frontale mediale (mOFC)»[21]; specifichiamo inoltre che «più la formula è considerata bella e più intensamente si attiva quest’area»[22].

I risultati dell’esperimento non sorprendono i matematici; per esempio, Colin Adams afferma: «“quando vedo una bellissima costruzione matematica, […], provo la stessa sensazione di quando osservo qualche forma di arte che mi colpisce”»[23]. Gli fa eco Daina Taimina, la quale ritiene che le belle soluzioni matematiche «“suonano come una melodia”»[24].

Infine, l’indagine condotta dal professor Zeki ha rivelato che non tutte le equazioni sono belle allo stesso modo: alcune risultano più attraenti di altre. Infatti, nonostante la soggettività che può intervenire in un qualunque giudizio estetico, i partecipanti alla ricerca hanno mostrato quasi unanimemente la propria preferenza per un’equazione in particolare, l’identità di Eulero[25]:

e + 1 = 0

Secondo Adams, tale formula «“richiede complessivamente non più di sette simboli per essere scritta: è sbalorditivo”»[26]. Per i matematici essa rappresenta «una combinazione irresistibile, perché lega cinque costanti fondamentali con tre operazioni aritmetiche basilari»[27].

 

3. UN «ESTETA DELLA SCIENZA»[28]: PAUL DIRAC E IL “PRINCIPIO DI BELLEZZA MATEMATICA”

Paul Adrien Maurice Dirac (1902-1984) è uno dei più importanti fisici del Novecento. Nato a Bristol, Nobel per la Fisica nel 1933, tra i suoi numerosi contributi ricordiamo, per esempio, la «sintesi tra relatività speciale e meccanica quantistica»[29]; inoltre, la sua equazione[30]

(ið – m) ψ = 0

ha previsto l’esistenza di una nuova particella, il positrone[31], la cui scoperta empirica ha aperto il mondo dell’antimateria alla fisica contemporanea.

In questo articolo ci concentriamo su una delle sue “credenze fondamentali”, ovvero il «principio di bellezza matematica»[32], un concetto che, per Dirac, detiene «una duplice funzione: di guida euristica e di criterio valutativo»[33]. Cosa si intende con “bellezza matematica”? Lo stesso Dirac, in uno scritto del 1939, specifica che essa non si può spiegare con precisione ma aggiunge che, nel coglierla, «gli studiosi di matematica non hanno alcuna difficoltà»[34].

Convinto che i criteri estetici dirigano la ricerca scientifica, il fisico inglese non esita a difendere la bellezza delle equazioni anche in caso di contrasto con i dati empirici: «è più importante che le equazioni siano belle piuttosto che in accordo con gli esperimenti»[35].

Quando in fisica si deve elaborare una nuova teoria, Dirac sostiene che, prima di tutto, bisogna individuarne l’impalcatura matematica, ma questa scelta deve seguire una direzione precisa: «bisognerebbe lasciarsi guidare da considerazioni di bellezza matematica»[36]; in un testo successivo, scrive che «se si lavora con il proposito di ottenere equazioni dotate di bellezza, e si possiede un’intuizione davvero solida, si è sicuramente sulla strada del progresso»[37]. In caso di reiterato disaccordo tra ipotesi ed esperimenti, per Dirac si può modificare la teoria, purché se ne sviluppi una con struttura matematica di ancora maggior bellezza.

Dirac elogia la relatività di Einstein: secondo lui, la teoria einsteiniana «ha introdotto – in una misura che non ha precedenti – la bellezza matematica nella descrizione della Natura»[38]. Lo scienziato di Bristol sostiene come sia stata proprio la sua bellezza a permettere alla relatività di ottenere credito presso i fisici. Inoltre, Dirac afferma che Einstein «era guidato solo da considerazioni relative alla bellezza delle equazioni»[39], e che «tutto il suo modo di procedere tendeva alla ricerca di una teoria bella»[40].

In uno scritto del 1979, Dirac elenca alcuni esperimenti che hanno confermato la teoria di Einstein, ma a un certo punto si chiede come ci si debba muovere in caso di contrasto fra questa concezione scientifica e le sue verifiche empiriche. Egli rifiuta nettamente l’idea che la relatività possa essere errata, perché «chiunque apprezzi la fondamentale armonia che esiste tra il modo in cui funziona la Natura e alcuni princìpi matematici generali non può non sentire che una teoria di tale bellezza ed eleganza deve essere sostanzialmente corretta»[41], a prescindere dal fatto che essa sia in sintonia (o meno) con le osservazioni.

Dirac – secondo il fisico Freeman Dyson – «“ancor più di Newton e di Einstein, usò il criterio di bellezza come un modo per trovare la verità”»[42].

 

CONCLUSIONI

All’inizio del nostro percorso abbiamo usato l’immagine delle rette parallele per illustrare la concezione da decostruire, quella che considera scienza e bellezza come due argomenti disgiunti. Questo lavoro ha mostrato come, anziché conferire di rette parallele, si dovrebbe parlare invece di una vera e propria rete epistemologica per spiegare gli intrecci e i collegamenti che uniscono impresa scientifica e filosofia estetica.

Scienziati e scienziate sono esseri umani e anche loro hanno bisogno di quella cosa tanto familiare eppure così misteriosa, ovvia e sfuggente allo stesso tempo, che è la bellezza. Può sembrare una banalità, ma la visione odierna della scienza ha offuscato simili ragionamenti, col risultato di farci separare ambiti che si arricchiscono a vicenda, se li facciamo comunicare.

A questo punto della trattazione, al lettore o alla lettrice è forse rimasta in sospeso una domanda fondamentale: “dunque, che cos’è la bellezza matematica?”. Rispondiamo a tale quesito avvalendoci della legge di gravitazione universale di Newton:

 

Dove:
“F” designa la forza d’attrazione,
“G” è la costante di gravitazione universale[43],
“m” indica le masse dei due corpi che dobbiamo considerare,
“d” rappresenta la loro distanza (espressa al quadrato).

Questa formula mostra che la forza d’attrazione gravitazionale tra due corpi aumenta al crescere delle loro masse, mentre diminuisce all’aumentare della loro distanza. Semplice e logico, vero? Anche la chiarezza fa parte del fascino di questa legge fisica.

Perché tale equazione è così bella? Prima di tutto, si trova scritta in una forma compatta ed elegante, senza risultare eccessivamente contorta né dal punto di vista del significato, né tantomeno da quello del significante.

La sua ampia efficacia empirica rende questa formula particolarmente versatile, anche al giorno d’oggi. Essa serve a spiegare fenomeni fisici che valgono sia sul pianeta Terra sia nell’Universo, dal momento che unisce le leggi di Galileo (che riguardano i fenomeni terrestri) con quelle di Keplero (valevoli invece per il macrocosmo); inoltre, grazie a questa legge, «Newton è in grado di inquadrare e spiegare un’amplissima serie di fenomeni, […] riuscendo anche a risolvere una gran quantità di questioni fisiche e astronomiche rimaste fino ad allora senza una risposta adeguata»[44].

Studiare le equazioni matematiche nella loro storicità le rende meno enigmatiche, più attraenti e più “umane”, perché sono umani coloro che le hanno formulate nei secoli, con le loro idee e visioni del mondo.

A tal proposito, sarà curioso sapere che Newton si occupò anche di ambiti che attualmente non rientrano nella scienza ufficiale come, per esempio, l’alchimia; questi interessi possono aver influenzato il lavoro scientifico di questo autore. La sua legge di gravitazione universale è, in un certo senso, “magica”; infatti, tale equazione prevede che due corpi interagiscano senza che ci sia contatto diretto tra loro, un’idea inconcepibile per Cartesio o Leibniz e che Newton stesso faticava ad accettare, ma «la nascose dietro al formalismo matematico con la sua indubbia efficacia»[45]. Al giorno d’oggi, grazie al concetto di “campo”, questo fenomeno ci appare come qualcosa di assodato, ma all’epoca era un’intuizione rivoluzionaria.

Semplicità, chiarezza ed efficacia, insieme alle considerazioni espresse fin qui, concorrono a rendere affascinante un’equazione matematica, ne eliminano quell’impressione di freddo distacco e la trasformano in qualcosa di vivo e appassionante.

Chiediamoci ora: un quadro, un brano musicale, una statua o un’equazione sono davvero entità così diverse? Sono magnifiche espressioni che generano bellezza, un sentimento umano profondo e necessario, che influenza il nostro quotidiano, orienta le nostre scelte e, last but not least, ci fa stare bene.

 

NOTE

[1] Dyson, F. (1956). Obituary of Hermann Weyl. Nature 177, 457–458, citato in: Frontiers | The experience of mathematical beauty and its neural correlates (frontiersin.org)

[2] estetica nell'Enciclopedia Treccani - Treccani

[3] Ibidem.

[4] Ubaldo Nicola, Atlante illustrato di Filosofia, Firenze-Milano, Giunti Editore, 1999-2005, p. 566.

[5] Franco Bertini, Io penso, Bologna, Zanichelli editore, 20222, vol. I, p. 233.

[6] Ibidem.

[7] Platone, Fedro, in Tutte le opere, a cura di E. V. Maltese, premessa di G. Caccia, Roma, Newton Compton editori, 20102, p. 945.

[8] Franco Bertini, op. cit., p. 233.

[9] Riccardo Chiaradonna, Plotino, Roma, Carocci editore, 2009, p. 71. Corsivi dell’autore.

[10] Ibidem.

[11] Paolo D’Angelo et al., Estetica, a cura di E. Franzini e A. Somaini, Milano, Raffaello Cortina Editore, 2002, p. 71.

[12] Ibidem.

[13] Ivi, p. 11.

[14] Ivi, p. 125.

[15] Ibidem.

[16] Ibidem.

[17] Ivi, p. 126.

[18] Ivi, p. 125.

[19] Il senso della mente per la bellezza: intervista con Semir Zeki - Le Scienze

[20] Sesso, bellezza ed equazioni - Il Sole 24 ORE

[21] Ibidem.

[22] La bellezza delle formule matematiche | Lost in Galapagos (corriere.it)

[23] Il senso dei matematici per la bellezza delle equazioni - Le Scienze

[24] Ibidem.

[25] https://sciencecue.it/formula-matematica-identita-eulero/17295/

[26] Il senso dei matematici per la bellezza delle equazioni - Le Scienze

[27] La bellezza delle formule matematiche | Lost in Galapagos (corriere.it)

[28] La fisica tra verità e bellezza - Il Sole 24 ORE

[29] Ibidem.

[30] Questa è la versione corretta, seppur semplificata dell'equazione di Dirac, in cui la derivata parziale è "tagliata" (ð). In notazione più completa può essere scritta così: (iγμμ - m) ψ = 0. La versione popolare (∂ + m) ψ = 0 è errata. Per approfondimenti: https://www.fe.infn.it/~bettoni/particelle/Lezione4-5.pdf

[31] Il positrone è l’antiparticella dell’elettrone; positroni ed elettroni hanno stessa massa e stesso spin, ma le rispettive cariche elettriche sono di segno opposto. Previsto teoricamente da Dirac nel 1928, il positrone è stato scoperto empiricamente da Anderson nel 1932.

[32] Paul A. M. Dirac, La bellezza come metodo, prefazione e a cura di V. Barone, Milano, Indiana Editore, 2013, p. 24.

[33] Ibidem.

[34] Ivi, p. 84

[35] Ivi, p. 104.

[36] Ivi, p. 87.

[37] Ivi, p. 104.

[38] Ivi, p. 84.

[39] Ivi, p. 175.

[40] Ibidem.

[41] Ivi, pp. 174-175. Corsivo dell’autore.

[42] È la matematica, bellezza! - Il Sole 24 ORE

[43] 6,67⋅10-11N⋅m2kg-2

[44] Newton in "Enciclopedia della Matematica" - Treccani

[45] Entanglement quantistico e viaggi nel tempo? - Controversie

 

BIBLIOGRAFIA

- Baker, J., 50 physics ideas you really need to know, London, Quercus Publishing, 2007, trad. it. 50 grandi idee di fisica, Bari, Edizioni Dedalo, 2009.

- Bertini, F., Io penso, Bologna, Zanichelli editore, 20222, 3 voll.

- Chiaradonna, R., Plotino, Roma, Carocci editore, 2009.

- D’Angelo, P., et al., Estetica, a cura di E. Franzini e A. Somaini, Milano, Raffaello Cortina Editore, 2002.

- Dirac, P.A.M., La bellezza come metodo, prefazione e a cura di Vincenzo Barone, Milano, Indiana Editore, 2013.

- Nicola, U., Atlante illustrato di Filosofia, Firenze-Milano, Giunti Editore, 1999-2005.

- Platone, Tutte le opere, a cura di E. V. Maltese, Roma, Newton Compton editori, 20102.

- Stewart, I., Seventeen Equations that Changed the World, London, Profile Books, 2012, trad. it. Le 17 equazioni che hanno cambiato il mondo, Torino, Giulio Einaudi editore, 2017-2018.

 

SITOGRAFIA

- Barone, V., La fisica tra verità e bellezza (La fisica tra verità e bellezza - Il Sole 24 ORE), Il Sole 24 Ore, 18 febbraio 2019.

- Bottazzini, U., È la matematica, bellezza! (È la matematica, bellezza! - Il Sole 24 ORE), Il Sole 24 Ore, 15 dicembre 2013.

- Bottazzini, U., La bellezza come “chiave” per la fisica (La bellezza come “chiave” per la fisica - Il Sole 24 ORE), Il Sole 24 Ore, 23 aprile 2019.

- Catania, A., CAMPO GRAVITAZIONALE (Campo gravitazionale (youmath.it)), YouMath, 2 maggio 2023.

- De Loa, J., Canone di bellezza nella storia: come è cambiato il concetto di bellezza dalla preistoria ad oggi (Canone di bellezza: come è cambiato l'ideale di bellezza dalla preistoria ad oggi | Studenti.it), Studenti.it.

- Leone, B., Isaac Newton e la gravitazione universale (Isaac Newton e la gravitazione universale | Studenti.it), Studenti.it, 29 dicembre 2009.

- Meldolesi, A., La bellezza delle formule matematiche (La bellezza delle formule matematiche | Lost in Galapagos (corriere.it)), Corriere della Sera, 16 febbraio 2014.

- Moskowitz, C., Equations Are Art inside a Mathematician’s Brain (Equations Are Art inside a Mathematician’s Brain - Scientific American), 4 marzo 2014, trad. it. Il senso dei matematici per la bellezza delle equazioni (Il senso dei matematici per la bellezza delle equazioni - Le Scienze), Le Scienze, 8 marzo 2014.

- Mussi, L., La legge della gravitazione universale di Isaac Newton (La legge della gravitazione universale di Isaac Newton (virgilio.it)), Virgilio Sapere.

- Panella, A., Entanglement quantistico e viaggi nel tempo? (Entanglement quantistico e viaggi nel tempo? - Controversie), Controversie, 31 ottobre 2023.

- Rosignolo, A., La bellezza tra filosofia, arte e moda (La bellezza tra filosofia, arte e moda - Aula di Lettere (zanichelli.it)), Zanichelli (Aula di Lettere), 24 novembre 2021.

- Sapere.it, La legge della gravitazione universale (La legge della gravitazione universale: La gravitazione universale - StudiaFacile | Sapere.it).

- Sgorbissa, F., Il senso della mente per la bellezza: intervista con Semir Zeki (Il senso della mente per la bellezza: intervista con Semir Zeki - Le Scienze), Le Scienze, 18 novembre 2022.

- Treccani, anagogia (anagogia in "Dizionario di filosofia" (treccani.it)), Dizionario di filosofia (2009).

- Treccani, campo (campo in "Enciclopedia dei ragazzi" - Treccani), Enciclopedia dei ragazzi (2005).

- Treccani, Dirac, Paul Adrien Maurice (Dirac, Paul Adrien Maurice nell'Enciclopedia Treccani), Enciclopedie on line.

- Treccani, ESTETICA (ESTETICA in "Enciclopedia Italiana" (treccani.it)), Enciclopedia Italiana - IX Appendice (2015).

- Treccani, estetica (estetica nell'Enciclopedia Treccani), Enciclopedie on line.

- Treccani, Filosofia e metodo scientifico da Bacone a Newton (Filosofia e metodo scientifico da Bacone a Newton in "Storia della civiltà europea a cura di Umberto Eco" - Treccani), Storia della civiltà europea a cura di Umberto Eco (2014).

- Treccani, L'Ottocento: fisica. L'elettromagnetismo e il campo (L'Ottocento: fisica. L'elettromagnetismo e il campo in "Storia della Scienza" - Treccani), Storia della Scienza (2003).

- Treccani, Newton (Newton in "Enciclopedia della Matematica" - Treccani), Enciclopedia della Matematica (2013).

- Treccani, Newton, Isaac (Newton, Isaac in "Dizionario di filosofia" - Treccani), Dizionario di filosofia (2009).

- Treccani, Newton, Isaac (Newton, Isaac in "Enciclopedia dei ragazzi" - Treccani), Enciclopedia dei ragazzi (2006).

- Treccani, particelle elementari (particelle elementari in "Enciclopedia dei ragazzi" (treccani.it)), Enciclopedia dei ragazzi (2006).

- Treccani, positrone (positrone in "Dizionario delle Scienze Fisiche" (treccani.it)), Dizionario delle Scienze Fisiche (1996).

- Treccani, scientismo (scientismo in "Dizionario di filosofia" (treccani.it)), Dizionario di filosofia (2009).

- Zeki, S., et al., The experience of mathematical beauty and its neural correlates (Frontiers | The experience of mathematical beauty and its neural correlates (frontiersin.org)), Frontiers in Human Neuroscience, 13 febbraio 2014.

- Zeki, S., Sesso, bellezza ed equazioni (Sesso, bellezza ed equazioni - Il Sole 24 ORE), trad. it., Il Sole 24 Ore, 21 aprile 2017.

 


La bellezza come metodo, di Paul A. M. Dirac

La bellezza come metodo, di Paul A. M. Dirac, Raffaello Cortina Editore, 2018

A cura di Vincenzo Barone

“Il ricercatore, nel suo sforzo di esprimere matematicamente le leggi fondamentali della Natura, deve mirare soprattutto alla bellezza.” Così scrive il grande fisico teorico Paul Dirac, le cui riflessioni sono raccolte qui per la prima volta. Il principio di bellezza matematica svolge secondo Dirac una duplice funzione. Nel contesto della scoperta, la bellezza determina la direzione della ricerca, nel contesto della giustificazione – ed è questa la tesi più forte –, la bellezza è la qualità che permette di giudicare una teoria, più ancora dell’accordo con le osservazioni. Nella sua scienza, Dirac usò con impareggiabile efficacia il criterio di bellezza come un modo per trovare la verità.

“Un libro che illustra splendidamente l’estetica matematica di Dirac, un aspetto cruciale del suo modo di pensare la natura.”

Graham Farmelo


Quando lavarsi le mani era considerato anti-scientifico

Spesso nei dibattiti sulla scienza e fra scienziati, manca una prospettiva storica. Essa insegnerebbe a essere meno assertivi e più aperti al possibile, anche se improbabile.

Questa è la storia, davvero triste e per lo più dimenticata, del medico ungherese Ignác Fülöp Semmelweis (1818 – 1865). [1]

Siamo a metà dell’Ottocento. Il giovane Semmelweis, fresco di laurea in medicina e affascinato dalla ricerca in anatomia patologica, fece domanda per un posto di assistente alla famosa Scuola Medica Viennese dove, peraltro, si era appena laureato; ma la sua domanda venne respinta. Chiese allora di diventare assistente di Joseph Škoda, clinico leader della scuola; ma questi aveva già promesso il lavoro a un altro medico. Fu così che Semmelweis si rivolse all'ostetricia, che a quel tempo non occupava un posto di prestigio nella medicina europea. Iniziò così a frequentare la clinica di ostetricia, ma ottenne anche il permesso di dissezionare i cadaveri delle donne morte per malattie e operazioni ginecologiche, imparando così i nuovi metodi di osservazione e di analisi.

 

L'assistentato e le sue ricerche

Conseguito successivamente il dottorato in Chirurgia ed Ostetricia, nel 1846 ottenne un incarico biennale come assistente presso la clinica ostetrica dell'Ospedale Generale di Vienna, a quel tempo il più moderno ospedale europeo. Sin dall’inizio della sua fondazione, la clinica ostetrica era stata diretta dal dottor Johann Boër. Dotato di un grande senso di umanità per le puerpere, il dottor Boër proibiva l'insegnamento sui cadaveri delle donne e ne dissezionava i corpi solo per studiarne le patologie che avevano provocato il decesso. Durante i trent'anni della sua direzione, la mortalità delle partorienti si aggirava intorno all'1%.

Tutto cambiò quando, nel 1823, la clinica fu affidata al dottor Johann Klein, di cui Semmelweis era uno degli assistenti. Inspiegabilmente, il numero di decessi delle partorienti per febbre puerperale cominciò a salire. Semmelweis era letteralmente ossessionato da ciò, anche perché nella clinica di Klein la percentuale di decessi era di molto superiore (circa quattro volte) rispetto alla seconda divisione diretta dal dottor Bartch, dove erano le ostetriche (e non i medici) a far partorire le donne. Il turbamento di Semmelweis aumentava la diligenza che metteva nelle sue ricerche.

La sua prima ipotesi fu l'aria mefitica delle città che, in piena rivoluzione industriale, non era molto salubre. Raccolse così dati sulla mortalità delle puerpere per febbre in città, in campagna e in ospedale; ma l'ipotesi non trovò conferma. La seconda ipotesi fu che le puerpere morissero di autosuggestione a causa del prete della cappella dell'ospedale che, per dare l'estrema unzione, passava scampanellando per i corridoi. Costrinse quindi il parroco a non usare più la campanella, ma le morti rimasero costanti.

Infine, ebbe l'intuizione che risolse il problema.

 

L'intuizione

Come a volte accade, fu un fatto apparentemente non collegato ai decessi delle partorienti ad aiutarlo a venir a capo della sua ossessione. Durante l'assenza di Semmelweis, tra il primo e il secondo periodo contrattuale, il suo collega e amico Jakob Kolletschka era morto a seguito di una malattia fulminante. Semmelweis ebbe la possibilità di studiarne la cartella clinica e fu colpito da due elementi:

  • l'autopsia praticata sul cadavere evidenziava lesioni simili a quelle che si riscontravano sulle donne morte per febbre puerperale;
  • Kolletschka solo qualche giorno prima si era ferito nel corso di una autopsia praticata sul cadavere di una di queste mamme.

Gli fu chiaro che la febbre puerperale e la morte del professor Kolletschka erano la stessa cosa dal punto di vista patologico, perché entrambe presentavano gli stessi cambiamenti anatomici. Se nel caso di Kolletschka i cambiamenti nella sepsi derivavano dall'inoculazione di particelle cadaveriche, allora la febbre puerperale doveva avere origine dalla stessa fonte. A questo punto Semmelweis si ricordò di un cambiamento nell’organizzazione del lavoro introdotto dal direttore Klein: gli assistenti avevano l'obbligo di eseguire fino a 15-16 autopsie al giorno per poi andare a visitare le partorienti della clinica. Ciò fu sufficiente a Semmelweis per giungere a un'ipotesi contro-intuitiva (e un po’ blasfema) per l'epoca: la febbre puerperale è una malattia che viene trasferita da un corpo all'altro a seguito del contatto che i medici e gli studenti presenti in reparto hanno prima con le donne decedute (su cui praticano autopsia) e poco dopo con le partorienti che vanno a visitare in corsia.

Era una teoria sconvolgente per i tempi. Per accertarla Semmelweis mise in atto, in accordo con la Direzione Sanitaria, una banale disposizione: tutti coloro che entravano nella clinica sarebbero stati obbligati a lavarsi le mani con una soluzione di cloruro di calce (ipoclorito di calcio). A questo aggiunse la disposizione che, per tutte le partorienti, si cambiassero le lenzuola sporche con altre pulite.

Era il maggio 1847, lui aveva 29 anni e, soprattutto, agiva con troppa proattività e al di fuori delle sue competenze…

 

La conferma della teoria

Dopo l'adozione del lavaggio delle mani con ipoclorito di calcio, l'anno successivo la percentuale di decessi per febbre puerperale si attestò tra l'1 e il 2%, all'incirca la stessa percentuale da sempre presente nell’altra divisione.

Quando Semmelweis espose ai colleghi i risultati della sperimentazione ottenne una reazione inaspettata: venne insultato, nonostante l’evidenza statistica, per aver costretto i medici a una pratica indecorosa, priva di alcun fondamento reale dato che “è ridicolo lavarsi le mani per qualcosa che non si vede” e anche perché le puerpere “venivano chiamate a lasciare questo mondo dal Buon Dio e non per colpa dei medici”.

Si attirò così gelosia, invidia e risentimenti. Il suo direttore, Johann Klein, che sosteneva con forza la necessità per gli studenti di praticare molte autopsie, trovava irritanti le iniziative di questo straniero ungherese, per giunta nazionalista (partecipò con entusiasmo ai moti del 1848), che si arrogava il diritto di emanare disposizioni che non gli competevano, offensive per il personale (l'obbligo di lavarsi le mani) ed onerose per l'ospedale (cambio frequente delle lenzuola). Così nel 1849, non gli rinnovò il contratto.

Semmelweis, affranto ed esasperato, successivamente scrisse molte lettere (alcune anche insolenti e aggressive) a colleghi dentro e fuori l’impero senza essere, però, mai compreso. Molti e illustri medici europei gli risposero, con qualche apprezzamento, ma senza che alcuno di loro riuscisse realmente a comprendere la portata dell’intuizione.

L'appoggio di alcuni amici - Josef Škoda, Ferdinand von Hebra, del suo vecchio maestro e grande patologo Rokitansky - servì solo in parte ad aiutarlo e a diffondere la nuova teoria, osteggiata dal mondo medico che per principio rifiutava di ammettere che i medici stessi potessero essere degli "untori" e quindi la causa diretta dei decessi. Peraltro, uno dei suoi più accaniti oppositori fu Rudolf Virchow, considerato il padre della patologia cellulare.

 

Ricovero in manicomio e morte

A causa dell'ostilità mostrata nei suoi confronti dai medici della Scuola Viennese, Semmelweis cadde in depressione, schiacciato anche da complessi d'inferiorità. Purtroppo, ci vollero molti anni prima che la scoperta di Semmelweis venisse accettata e applicata in modo esteso. Infatti, la prova della contaminazione batterica fu data da Pasteur solo nel 1864, quasi venti anni dopo la prima disposizione di Semmelweis di lavarsi le mani. Prima di allora la scoperta di Semmelweis venne screditata e, nonostante gli effetti positivi, fu licenziato dall'ospedale di Vienna per aver dato disposizioni senza esserne autorizzato. Vale la pena notare come ovviamente, a seguito dell’allontanamento di Semmelweis, le morti per infezione ripresero ad aumentare e questo non fu sufficiente a far cambiare opinione a Klein e agli altri oppositori di Semmelweis. Insomma, per loro il dato empirico non era poi tanto… empirico.

---------

Tornato in Ungheria Semmelweis applicò lo stesso metodo all'ospedale di San Rocco a Pest, ottenendo anche qui un abbassamento significativo dei casi di febbre puerperale. Fu proprio in Ungheria che nel 1861 scrisse il libro Eziologia, concetto e profilassi della febbre puerperale. Purtroppo la comunità scientifica dell'epoca gli si scagliò nuovamente contro e Semmelweis finì per essere ricoverato in manicomio. Morì nel 1865 (a 47 anni) per setticemia, sviluppatasi a causa delle ferite inferte dalle guardie del manicomio e delle cure non sottoposte ad adeguata profilassi; proprio ciò che la sua scoperta avrebbe potuto evitare.

Solo qualche decennio dopo, i lavori di Louis Pasteur (del 1879e di Joseph Lister (nel 1883) avrebbero definitivamente mostrato la grandezza delle intuizioni di Semmelweis.

A compensazione dei pregiudizi e torti subiti, la città di Budapest nel 1894 gli eresse un monumento tombale; poi nel 1906 una statua (successivamente collocata davanti all'ospedale San Rocco); e infine gli intitolò la Clinica Ostetrica dell'Università, che ancora porta il suo nome.

 

Infine

Nel Novecento il neopositivista Carl Gustav Hempel, in Filosofia delle scienze naturali (1966), utilizzò l'indagine di Semmelweis sulle cause della febbre puerperale come modello di ricerca scientifica basata sull'evidenza empirica. In particolare, venne apprezzato il suo uso della modalità logica modus tollens, cioè la prova tramite confutazione di ipotesi alternative; anticipando così alcuni aspetti del falsificazionismo.

Anche lo scrittore e medico francese Louis-Ferdinand Céline nel 1924 dedicò la sua tesi di laurea in medicina al medico ungherese e poi nel 1952 pubblicò il libro Il dottor Semmelweis, in cui racconta la sua vicenda.

------------

La lezione non (ancora) appresa

Oggi è chiamata "riflesso di Semmelweis" la riluttanza o resistenza ad accettare una scoperta in campo scientifico o medico che contraddica norme, credenze o paradigmi stabiliti. Un fenomeno a cui, dagli anni Cinquanta in poi, molti filosofi, storici e sociologi della scienza hanno dedicato molta attenzione.

Eppure, nonostante ciò, il mondo scientifico non si è fatto (nel corso degli ultimi decenni) più aperto e tollerante verso ipotesi o teorie alternative rispetto a quelle dominanti. Al contrario, stiamo assistendo a un ritorno dello scientismo, dove vengono usate con troppa facilità (e talvolta violenza) espressioni quali “anti-scientifico”, “pseudoscienza”, “teorie complottiste”, “fake news”, “post-verità”.

Oggi, visto il clima di caccia alle streghe a cui abbiamo assistito negli ultimi anni,
Semmelweis forse non sarebbe finito in manicomio, ma radiato probabilmente sì…

 

Riferimenti

  • Sherwin B. Nuland, Il morbo dei dottori. La strana storia di Ignác Semmelweis, Torino: Edizioni Codice, 2004.
  • Louis-Ferdinand Céline (1952), Il dottor Semmelweis, Milano, Adelphi 1975.

 

Film

  • Semmelweis(cortometraggio), USA/Austria 2001: Belvedere Film (regia Jim Berry)
  • Docteur Semmelweis, Francia/Polonia 1995 (regia Roger Andrieux)
  • Semmelweis, Olanda 1994: Humanistische Omroep Stichting (regia Floor Maas)
  • Ignaz Semmelweis - Arzt der Frauen(Ignaz Semmelweis, il Medico delle Donne), Germania/Austria 1987: ZDF/ORF (regie Michael Verhoeven)
  • Semmelweis, Italia/Svizzera 1980: RTSI(regia Gianfranco Bettetini)
  • Semmelweis - Retter der Mütter(Semmelweis, il Salvatore delle Madri), Germania dell'Est, 1950: DEFA (Regia Georg C. Klaren)
  • Semmelweis, Ungheria 1940: Mester Film (regia André De Toth)
  • That mothers might live(Che le madri possano vivere), USA 1938: MGM (Regia Fred Zinnemann) Oscar per il Miglior Cortometraggio

 

[1] Per una ricostruzione più approfondita: https://it.wikipedia.org/wiki/Ign%C3%A1c_Semmelweis e https://ambulatoridemetra.it/demetra/ignac-fulop-semmelweis-fra-genio-e-follia-la-storia-del-medico-che-intui-il-valore-del-lavaggio-delle-mani/

 


Maniac, di Benjamín Labatut

Maniac, di Benjamín Labatut, Adelphi, 2023.

Quando alla fine della seconda guerra mondia­le John von Neumann concepisce il MANIAC – un calcolatore universale che doveva, nel­le intenzioni del suo creatore, «afferrare la scienza alla gola scatenando un potere di cal­colo illimitato» –, sono in pochi a rendersi conto che il mondo sta per cambiare per sem­pre.

Perché quel congegno rivoluzionario – parto di una mente ordinatrice a un tempo cinica e visionaria, infantile e «inesorabil­mente logica» – non solo schiude dinanzi al genere umano le sterminate praterie dell’in­formatica e dell’intelligenza artificiale, ma lo conduce sull’orlo dell’estinzione, liberan­do i fantasmi della guerra termonucleare. Che «nell’anima della fisica» si fosse annidato un demone lo aveva del resto già intuito Paul Eh­renfest, sin dalla scoperta della realtà quan­tistica e delle nuove leggi che governavano l’a­tomo, prima di darsi tragicamente la morte. Sono sogni grandiosi e insieme incubi tre­mendi, quelli scaturiti dal genio di von Neu­mann, dentro i quali Labatut ci sprofonda, lasciando la parola a un coro di voci: delle grandi menti matematiche del tempo, ma anche di familiari e amici che furono testi­moni della sua inarrestabile ascesa. Ci ritro­veremo a Los Alamos, nel quartier generale di Oppenheimer, fra i «marziani unghere­si» che costruirono la prima bomba atomi­ca; e ancora a Princeton, nelle stanze dove vennero gettate le basi delle tecnologie digi­tali che oggi plasmano la nostra vita. Infine, assisteremo ipnotizzati alla sconfitta del cam­pione mondiale di go, Lee Sedol, che soc­combe di fronte allo strapotere della nuova divinità di Google, AlphaGo. Una divinità ancora ibrida e capricciosa, che sbaglia, de­lira, agisce per pura ispirazione – a cui altre seguiranno, sempre più potenti, sempre più terrificanti.
Con questo nuovo libro, che prosegue ideal­mente Quando abbiamo smesso di capire il mon­do, Labatut si conferma uno straordinario tessitore di storie, capace di trascinare il letto­re nei labirinti della scienza moderna, la­sciandogli intravedere l’oscurità che la nutre.


Maniac, di Benjamín Labatut - Considerazioni

Quando alla fine della seconda guerra mondia­le John von Neumann concepisce
il MANIAC – un calcolatore universale che doveva, nel­le intenzioni del suo creatore,
«afferrare la scienza alla gola scatenando un potere di cal­colo illimitato»
- sono in pochi a rendersi conto che il mondo sta per cambiare per sem­pre”
[1]

 

Il terzo libro di Benjamín Labatut, pubblicato in Italia per i tipi di Adelphi, cerca di raccontare, come i due che lo hanno preceduto, la società e la tecnologia del presente grazie ad uno sguardo su alcune figure drammatiche, tra cui spiccano John Von Neumann , il creatore del Maniac e Lee Sedol, maestro di Go.

Cos’è il Go? Un gioco millenario diffuso soprattutto in Asia
che il profano può considerare come una sorta di dama
soggetta ad una rapida esplosione combinatoria.
Esplosione combinatoria che si è a lungo tempo considerata
il vero argine contro il riproporsi della capitolazione
nel mondo degli scacchi di Garry Kasparov contro DeepBlue.

 

----------

Il tema di quella che chiamiamo intelligenza artificiale è raccontato dalla prospettiva di Sedol, uno dei due veri protagonisti di questa narrazione, che con una frase esemplifica un atteggiamento molto in voga nei confronti di questi temi: il senso di «impotenza e paura», che esalta quella sensazione di «debolezza e fragilità di noi esseri umani».

Di virgolettati come questi, è bene dirlo, il lettore non ne troverà poi molti, a favore invece di un gusto dell’invenzione tutto modernista dell’esplosione, della frammentazione del racconto.

Una frammentazione che regna in realtà nello sguardo con cui Labatut dipinge l’altro protagonista, John von Neumann, e si eclissa invece nella più piana rappresentazione delle vicende di Sedol.

In questo libro non troviamo l’efficacia evocativa che pervade i bozzetti di figure che ci hanno aiutato a “smettere di capire il mondo”, ma una sorta di hollywoodizzazione della vicenda che rende sicuramente avvincenti alcuni momenti di quella rivoluzione innescata dagli anni ’930, a partire della sommessa presentazione di Kurt Gödel a Könisberg.

Tuttavia, si può dire che la lettura non si conclude avendo capito davvero e a fondo quello che è successo. Von Neumann pare niente più che una scheggia impazzita, intenta a portare a termine ogni progetto che incontra nel suo vagabondaggio nei regni della fisica, della matematica e della biologia. Sedol, al contrario, sembra semplicemente schiacciato da qualcosa di impossibile da comprendere.

L’istrionismo del primo e l’incredulità del secondo risultano allora uniti da uno stesso fatalismo: di fronte ad una abilità dirompente di costruzione del mondo, pare che l’intelligenza che la sottende, questa abilità, non possa essere di questo mondo.

Ne segue, inevitabilmente, che von Neumann, insieme ad altri geniali profughi ungheresi, diventi un «marziano» e Sedol paia affrontare nelle sue iconiche partite il terminale umano di uno dei Grandi Antichi sognati negli incubi di Lovecraft, piuttosto che il risultato di una peculiare modo di ragionare sul mondo (quello di una infallibile computazione).

--------

Cosa resta dunque da fare a questa umanità derelitta?

Arrendersi a queste forme di intelligenza aliena?

No, dice Labatut, perché il «miracolo», come lo ha definito in una recente intervista[2],  può sempre accadere e può sempre dunque stravolgere il domani.

Ma è stato un miracolo, allora, che von Neumann abbia portato a fondo la ricerca sulla bomba H?

È stato un miracolo che la sua teoria dei giochi sia stata «l’architrave della Guerra Fredda», come Labatut fa dire a Oskar Morgenstern?

Oppure è stato un miracolo il tumore alle ossa che a 53 anni ha interrotto le sue azioni su questa terra?

Labatut non sorvola certo su questi fatti storici e morali e anzi fa di essi alcuni snodi cruciali del suo racconto. Tuttavia, possiamo dire che l’inevitabilità di un contrappasso sia la stessa di una decisione presa scientemente e ripetutamente in compagnia dei più disparati generali?

Dove sta, quindi, la responsabilità del singolo?

--------

Ecco, forse preso dal tentativo di rendere il più godibile, e cioè serrata e avvincente, la narrazione, Labatut non si confronta davvero con questa domanda, ma la fa aleggiare nelle decisioni di ogni singolo attore.[3]

A chi legge resta così il compito di soppesare e dare una propria risposta a questa questione e forse, durante questo dibattimento tutto privato, torneranno alla mente le parole con cui Leonardo Sciascia commenta il giudizio di Enrico Fermi sul futuro scomparso Ettore Majorana.

---------

Alla «mancanza di buon senso» rimproverata da Fermi a Majorana, mancanza che non gli avrebbe permesso di inventare la bomba atomica come lui invece aveva fatto, Sciascia propone un’altra visione: «Perché un genio della fisica come Majorana, trovandosi di fronte alla virtuale, anche se non riconosciuta, scoperta della fissione nucleare, non potrebbe aver capito che il fiammifero per accendere l’isola di fulmicotone su cui si trovavano c’era già, ed essersene allontanato – poiché mancava di buon senso – con sgomento, con terrore?».

Rompere la mano che vuol sfregare quel fiammifero allora può diventare il vero segno di un’intelligenza non aliena ma ben radicata nel nostro pianeta. E non è detto che questa intelligenza sia per forza umana.

 

 

NOTE

[1] Dal risvolto di copertina dell’edizione italiana: Maniac, B. Labatut, Adelphi, 2023

[2] L’intervista è quella rilasciata a Fahrenheit, il programma di Rai Radio 3, e il passaggio è nella risposta dell’autore all’ultima domanda della conduttrice. https://www.raiplaysound.it/audio/2023/10/Fahrenheit-del-04102023-24a6d3a6-db42-424b-8941-1ebcb3426e1e.html

[3] Nella stessa intervista prima menzionata Labatut, tuttavia, dice: «People who have great intelligence carry a weight of responsibility but the fact of the matter is that we, as human beings, make the world and it could be made in very different ways, so the responsibility is shared. It’s not something that we can just delegate to others who are smarter than us, who are more intelligent than us, who are more capable than us. I think that there are certain people whose job it is to come up with new things but it's all of our jobs to decide what we do what are the limits»


Entanglement quantistico e viaggi nel tempo?

Recentemente, un gruppo di fisici di Cambrige[1] ha simulato un loop temporale tra presente e passato, legato agli effetti dell’entanglement quantistico, che ha permesso di simulare un effetto nel passato di una azione fatta nel presente.

L'entanglement è un fenomeno quantistico, in cui delle proprietà fondamentali quantistiche sono condivise tra due o più particelle, come se fossero “gemellate” e si comportano in modo coordinato, anche se si trovano a grande distanza. In altre parole, due particelle sono “entangled” (intrecciate) se nascono da un medesimo processo e sono descritte da uno stesso stato quantico globale; rimangono, però, separate e hanno carattere indefinito finché “non viene fatta una misura”.

La cosa straordinaria è che una azione su una particella provoca lo stesso cambiamento anche nelle altre “gemelle”.

--------

Il tema dell’entanglement fu uno dei punti di culmine della lunga controversia che oppose da una parte Albert Einstein e dall’altra i quantisti - in particolare, Niels Bohr e, più tardi, J.S. Bell – sulla validità dei principi della meccanica quantistica.

È una controversia che oppone due diverse visioni del mondo e della scienza, quella, per semplificare, moderatamente realista di Einstein e quella più formalista dei fisici quantistici della Scuola di Copenhagen – Bohr, Pauli, Heiseneberg.

Visioni diverse che, oggi, sono ancora oggetto di discussione filosofica, storica e sociologica e anche, seppur meno esplicitamente, scientifica.

Discussione filosofica che Newton eluse già nel ‘600: la legge di gravitazione universale ipotizza, infatti, l’azione a distanza, cioè la possibilità che tra due oggetti ci sia un’azione senza che vengano a contatto, ma la nascose dietro al formalismo matematico con la sua indubbia efficacia. Newton lasciò cadere la questione per non essere accusato di magia.

Anche oggi, la parapsicologia, o scienza del paranormale, si fonda su queste (controverse) premesse.[2]

 

L'esperimento

Nell'esperimento, il team ha simulato l'entanglement di due particelle quantistiche. Una di queste particelle è stata poi utilizzata in un esperimento separato. Dopo aver completato questo esperimento, i ricercatori hanno acquisito nuove informazioni che avrebbero influenzato le loro azioni precedenti. A questo punto, hanno manipolato la seconda particella per alterare retroattivamente lo stato passato della prima, cambiando così l'esito dell'esperimento. Questa manipolazione è stata possibile grazie all'entanglement quantistico, che ha permesso ai ricercatori di "comunicare" con il passato, tornando indietro nel tempo.

 

Immaginario e suggestioni

I media si sono subito lanciati a immaginare viaggi nel tempo; ma non è ancora e non è proprio questo.

La simulazione eseguita non è la prima di questo genere, ed è particolarmente significativa per due motivi:

1) il modello è replicabile;

2) le simulazioni sono misurabili.

Ciò vuole dire che gli scienziati sanno quando i risultati sono positivi e quando la simulazione fallisce. E questo è un passo essenziale per la fase successiva e per sostenere le ulteriori sperimentazioni.

Il modello si basa sulla manipolazione dell’entaglement quantistico, un fenomeno proprio della dimensione quantistica e non misurabile nella dimensione della fisica classica.

Quando due particelle interagiscono, alcuni legami derivati dalla loro interazione restano validi anche dopo il termine dell'interazione stessa. In altre parole, rimane in esse un’impronta della loro passata interazione.

---------

Ciò che è più interessante, da un punto di vista sia metodologico che sostantivo, è che le simulazioni hanno mostrato che una volta su quattro è possibile influenzare il risultato del comportamento futuro di una particella che ha subito entaglement usando le particelle correlate.

È come inviare un messaggio oggi, recapitarlo domani e influenzarne il suo contenuto tra oggi e domani; facendolo domani.

-----------

La simulazione mostra che esistono modelli consistenti e misurabili per raccogliere informazioni utili su come un evento nella dimensione quantistica può essere influenzato rispetto al suo esito finale nella scala del tempo.

 

Ma questo, almeno per il momento, non significa scrivere il futuro dal presente.

 

 

NOTE

[1] Il lavoro è stato pubblicato su Physical Review Letters, https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.150202

[2] Chi volesse prendere una laurea in Scienza del Paranormale, può iscriversi all’Università di Edimburgo, dove si tiene il corso di laurea in Parapsychology.

 


Solaris, il racconto della scienza - Un manifesto

Noi uomini partiamo per il cosmo pronti a tutto:
alla solitudine, alla lotta, al martirio e alla morte.
Anche se per pudore non lo proclamiamo a gran voce,
spesso siamo convinti di essere persone straordinarie.
In realtà quello che vogliamo non è conquistare il cosmo,
ma estendere la Terra fino alle sue frontiere.[1]

 

 

PERCHÉ UNA RUBRICA CHIAMATA SOLARIS?

 Solaris è un romanzo pubblicato da Stanislaw Lem nel 1961, l’anno in cui Jurij Alekseevič Gagarin accedeva allo spazio per la prima volta nella storia dell’umanità. È la storia di un incontro tra uno psicologo-astronauta e la forma di vita del pianeta Solaris. Ma è anche una riflessione sul senso del “contatto”, sulla straniante alterità del cosmo.

Solaris è un pianeta oceanico che non risponde all’umano: con apparente e incomprensibile volontà crea geometrie megalitiche e “quasi architettoniche”, materializza figure femminee estratte dall’inconscio di chi gli si avvicina e poi disfa ogni sua creazione nell’oblio della sua essenza marina.

“Perché il mondo parla?” Si chiede Kris Kelvin - lo psicologo coinvolto nello studio di Solaris e attorno a cui gira la narrazione - “vuole giocare con noi? O forse punirci?”[2]

----------

La letteratura parla della scienza esprimendone l’immagine sociale, la scienza parla infondendo le sue fantasie nelle storie che ci raccontiamo.  Libri più o meno noti, pellicole apparentemente super partes partecipano collettivamente alla produzione degli immaginari scientifici e fantascientifici che finiscono inevitabilmente per influire sulle nostre aspettative future, sulla nostra percezione presente, sul modo in cui riorganizziamo il passato.

La letteratura, come le grandi cose, vive nel via vai che oscilla tra l’espressione e la descrizione.

Può raccontare la scienza che conosciamo, favorirne la diffusione; si pensi a Quando abbiamo smesso di capire il mondo (2021) di Benjamín Labatut o a La Bomba (2020) di Alcante, Bollet e Rodier.

La letteratura è avvertimento sul futuro e tentativo di previsione.

Günther Anders scriveva che autori come Huxley, Orwell o Lem lasciano indietro i filosofi che arrancano: i secondi indaffarati a definire chi ha fatto cosa, i primi preoccupati di cosa le cose faranno di noi.[3]

Tramite l’artificio e l’incanto si raccontano i timori di un’intera società, come nei grandi racconti socio-fantascientifici di James Graham Ballard o, ancora, nel romanzo scientifico-distopico che ha ispirato molti racconti del secolo scorso: Noi (1924) di Evgenij Ivanovič Zamjatin.

Alle volte la letteratura è la via privilegiata per testimoniare l’incontro del singolo - così piccolo - rispetto ai grandi Golem della scienza, della medicina, della tecnologia, del progresso.

Ne è esempio: Non morire di Anne Boyer, una lunga lettera di denuncia al mondo delle terapie contro il cancro che sarà oggetto di questa prima uscita.

D’altra parte, L’enorme bagaglio immaginativo di cui la letteratura si fa carico è ciò che, a sua volta, influenza inevitabilmente le pretese e le traiettorie di chi lavora attivamente nel mondo “scientifico”.

Ci sono le scienze, gli scienziati con il camice bianco, le tecnologie, le politiche di controllo e sviluppo, le controversie e le invidie, i dati e le persone.

Poi c’è Kris, “razionale e scientifico”, trascinato nell’alterità policroma di Solaris. C’è la solaristica, fatta di termini dotti ed esperti che su Solaris non avevano mai messo piede, pur scrivendone: solarista-ciberneti, solarista-simmetriologi… Infine c’è Lem che scrive una storia: sua, nostra? È sempre Kelvin a rispondere, rieccheggiando un noto aforisma di Proust: “non abbiamo bisogno di altri mondi, ma di specchi”.[4]

L’immenso insieme di queste storie mostra le scienze e le tecnologie nel rapporto che instaurano con la singola vita o con un gruppo sociale, con le speranze implicite di un’intera cultura, nel continuo gioco di scambi che le attraversa.

Perciò, noi che vi raccontiamo questi libri, non potevamo che chiamare Solaris questa rubrica: nell’amore per ciò che ci si racconta, speriamo che le parole possano parlarci ancora, e nuovamente.

 

NOTE

[1] S. Lem, Solaris (1961), a cura di M. Cataluccio, 2013, p. 108.

[2] S. Lem, Solaris, cit., p. 110.

[3] G. Anders, L'uomo è antiquato vol. II (1979), tr. it. M. A. Mori, Bollati Boringhieri editore, Torino 2007, p. 396.

[4] S. Lem, Solaris, cit., p. 109.